{ "id": "1903.10809", "version": "v1", "published": "2019-03-26T11:39:09.000Z", "updated": "2019-03-26T11:39:09.000Z", "title": "The Multiset Partition Algebra", "authors": [ "Sridhar Narayanan", "Digjoy Paul", "Shraddha Srivastava" ], "comment": "34 pages. Comments welcome", "categories": [ "math.RT", "math.CO" ], "abstract": "For each partition $\\lambda$, we introduce the multiset partition algebra $\\mathcal{MP}_\\lambda(\\xi)$ over $F[\\xi]$, where $F$ is a field of characteristic $0$. Upon specializing $\\xi$ to a positive integer $n$, the resulting algebra $\\mathcal{MP}_\\lambda(n)$ is in Schur-Weyl duality with the action of the symmetric group $S_n$ on $\\text{Sym}^\\lambda(F^n)$. The generating function of the dimensions of irreducible representations of $\\mathcal{MP}_{\\lambda}(n)$ is given in terms of Schur functions. When $\\lambda$ is a partition of $k$, $\\mathcal{MP}_\\lambda(\\xi)$ is isomorphic to a subalgebra of the partition algebra $\\mathcal{P}_k(\\xi)$ of Jones and Martin. When $\\lambda=(1^k)$, $\\mathcal{MP}_\\lambda(\\xi)$ is isomorphic to $\\mathcal{P}_k(\\xi)$. We identify a subalgebra of $\\mathcal{MP}_{\\lambda}(\\xi)$ called the balanced multiset partition algebra whose structure constants do not depend on $\\xi$. This algebra is in Schur-Weyl duality with the group of monomial matrices acting on $\\text{Sym}^\\lambda(F^n)$.", "revisions": [ { "version": "v1", "updated": "2019-03-26T11:39:09.000Z" } ], "analyses": { "subjects": [ "05E10", "05E15", "20C30" ], "keywords": [ "schur-weyl duality", "balanced multiset partition algebra", "symmetric group", "monomial matrices", "schur functions" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }