arXiv:1903.06817 [math.NT]AbstractReferencesReviewsResources
The Largest Prime Dividing the Maximal Order of an Element of $S_n$
Published 2019-03-15Version 1
We define $g(n)$ to be the maximal order of an element of the symmetric group on $n$ elements. Results about the prime factorization of $g(n)$ allow a reduction of the upper bound on the largest prime divisor of $g(n)$ to $1.328\sqrt{n\log n}$.
Journal: Mathematics of Computation 64 (1995), 407-410
Categories: math.NT
Keywords: largest prime dividing, maximal order, largest prime divisor, symmetric group, upper bound
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2411.19259 [math.NT] (Published 2024-11-28)
Maximal order for divisor functions and zeros of the Riemann zeta-function
arXiv:1009.2944 [math.NT] (Published 2010-09-15)
Le plus grand facteur premier de la fonction de Landau
arXiv:1802.02901 [math.NT] (Published 2018-02-07)
Pair correlation of sequences $(\lbrace a_n α\rbrace)_{n \in \mathbb{N}}$ with maximal order of additive energy