{ "id": "1903.06817", "version": "v1", "published": "2019-03-15T22:09:58.000Z", "updated": "2019-03-15T22:09:58.000Z", "title": "The Largest Prime Dividing the Maximal Order of an Element of $S_n$", "authors": [ "Jon Grantham" ], "journal": "Mathematics of Computation 64 (1995), 407-410", "doi": "10.1090/S0025-5718-1995-1270619-3", "categories": [ "math.NT" ], "abstract": "We define $g(n)$ to be the maximal order of an element of the symmetric group on $n$ elements. Results about the prime factorization of $g(n)$ allow a reduction of the upper bound on the largest prime divisor of $g(n)$ to $1.328\\sqrt{n\\log n}$.", "revisions": [ { "version": "v1", "updated": "2019-03-15T22:09:58.000Z" } ], "analyses": { "subjects": [ "11N56", "11N05", "20B30" ], "keywords": [ "largest prime dividing", "maximal order", "largest prime divisor", "symmetric group", "upper bound" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Math. Comp." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }