arXiv:1902.04830 [math.GT]AbstractReferencesReviewsResources
Volume form on moduli spaces of d-differentials
Published 2019-02-13Version 1
Given $d\in \mathbb{N}$, $g\in \mathbb{N} \cup\{0\}$, and an integral vector $\kappa=(k_1,\dots,k_n)$ such that $k_i>-d$ and $k_1+\dots+k_n=d(2g-2)$, let $\Omega^d\mathcal{M}_{g,n}(\kappa)$ denote the moduli space of meromorphic $d$-differentials on Riemann surfaces of genus $g$ whose zeros and poles have orders prescribed by $\kappa$. We show that $\Omega^d\mathcal{M}_{g,n}(\kappa)$ carries a volume form that is parallel with respect to its affine complex manifold structure, and that the total volume of $\mathbb{P}\Omega^d\mathcal{M}_{g,n}(\kappa)=\Omega^d\mathcal{M}_{g,n}/\mathbb{C}^*$ with respect to the measure induced by this volume form is finite.
Comments: preliminary version, comments welcome!
Related articles: Most relevant | Search more
arXiv:1610.03768 [math.GT] (Published 2016-10-12)
The high-dimensional cohomology of the moduli space of curves with level structures
arXiv:1301.0062 [math.GT] (Published 2013-01-01)
An analytic construction of the Deligne-Mumford compactification of the moduli space of curves
arXiv:1911.04176 [math.GT] (Published 2019-11-11)
On Moduli Spaces of Convex Projective Structures on Surfaces: Outitude and Cell-Decomposition in Fock-Goncharov Coordinates