{ "id": "1902.04830", "version": "v1", "published": "2019-02-13T10:06:06.000Z", "updated": "2019-02-13T10:06:06.000Z", "title": "Volume form on moduli spaces of d-differentials", "authors": [ "Duc-Manh Nguyen" ], "comment": "preliminary version, comments welcome!", "categories": [ "math.GT", "math.AG", "math.DG" ], "abstract": "Given $d\\in \\mathbb{N}$, $g\\in \\mathbb{N} \\cup\\{0\\}$, and an integral vector $\\kappa=(k_1,\\dots,k_n)$ such that $k_i>-d$ and $k_1+\\dots+k_n=d(2g-2)$, let $\\Omega^d\\mathcal{M}_{g,n}(\\kappa)$ denote the moduli space of meromorphic $d$-differentials on Riemann surfaces of genus $g$ whose zeros and poles have orders prescribed by $\\kappa$. We show that $\\Omega^d\\mathcal{M}_{g,n}(\\kappa)$ carries a volume form that is parallel with respect to its affine complex manifold structure, and that the total volume of $\\mathbb{P}\\Omega^d\\mathcal{M}_{g,n}(\\kappa)=\\Omega^d\\mathcal{M}_{g,n}/\\mathbb{C}^*$ with respect to the measure induced by this volume form is finite.", "revisions": [ { "version": "v1", "updated": "2019-02-13T10:06:06.000Z" } ], "analyses": { "subjects": [ "51H25", "51M05" ], "keywords": [ "volume form", "moduli space", "d-differentials", "affine complex manifold structure", "integral vector" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }