arXiv Analytics

Sign in

arXiv:1902.01252 [math.CO]AbstractReferencesReviewsResources

Equivalent definitions for (degree one) Cameron-Liebler classes of generators in finite classical polar spaces

Jozefien D'haeseleer, Maarten De Boeck

Published 2019-02-04Version 1

In this article, we study degree one Cameron-Liebler sets of generators in all finite classical polar spaces, which is a particular type of a Cameron-Liebler set of generators in this polar space, [9]. These degree one Cameron-Liebler sets are defined similar to the Boolean degree one functions, [15]. We summarize the equivalent definitions for these sets and give a classification result for the degree one Cameron-Liebler sets in the polar spaces W(5,q) and Q(6,q).

Related articles: Most relevant | Search more
arXiv:1712.06176 [math.CO] (Published 2017-12-17)
Cameron-Liebler sets of generators in finite classical polar spaces
arXiv:2208.13023 [math.CO] (Published 2022-08-27)
On $m$-ovoids of finite classical polar spaces with an irreducible transitive automorphism group
arXiv:2308.08254 [math.CO] (Published 2023-08-16)
Cameron-Liebler sets in permutation groups