{ "id": "1902.01252", "version": "v1", "published": "2019-02-04T15:27:25.000Z", "updated": "2019-02-04T15:27:25.000Z", "title": "Equivalent definitions for (degree one) Cameron-Liebler classes of generators in finite classical polar spaces", "authors": [ "Jozefien D'haeseleer", "Maarten De Boeck" ], "categories": [ "math.CO" ], "abstract": "In this article, we study degree one Cameron-Liebler sets of generators in all finite classical polar spaces, which is a particular type of a Cameron-Liebler set of generators in this polar space, [9]. These degree one Cameron-Liebler sets are defined similar to the Boolean degree one functions, [15]. We summarize the equivalent definitions for these sets and give a classification result for the degree one Cameron-Liebler sets in the polar spaces W(5,q) and Q(6,q).", "revisions": [ { "version": "v1", "updated": "2019-02-04T15:27:25.000Z" } ], "analyses": { "keywords": [ "finite classical polar spaces", "equivalent definitions", "cameron-liebler classes", "cameron-liebler set", "generators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }