arXiv:1901.06160 [math.NT]AbstractReferencesReviewsResources
Asymptotic of some sums
Published 2019-01-18Version 1
The paper compares the asymptotic of the expressions $\frac {1} {x} \sum\limits_{n \leq x} {f(n)}$ and $\sum\limits_{n \leq x} {\frac {f(n)} {n}}$, $\frac {1} {x} \sum\limits_{p \leq x} {f(p)}$ and $\sum\limits_{p \leq x} {\frac {f(p)} {p}}$. The asymptotic of sums $\sum\limits_{n \leq x} {\frac {f(n)} {n}}$ and $\sum\limits_{p \leq x} {\frac {f(p)} {p}}$ ($n,p$ - respectively, positive and prime numbers) are determined if the asymptotic of sums are known, respectively: $\sum\limits_{n \leq x} {f(n)}$,$\sum\limits_{p \leq x} {f(p)}$.
Related articles: Most relevant | Search more
arXiv:1606.06874 [math.NT] (Published 2016-06-22)
New bounds for the sum of the first $n$ prime numbers
arXiv:math/0412313 [math.NT] (Published 2004-12-16)
Notes on Pair Correlation of Zeros and Prime Numbers
arXiv:0907.0315 [math.NT] (Published 2009-07-02)
About certain prime numbers