{ "id": "1901.06160", "version": "v1", "published": "2019-01-18T10:09:35.000Z", "updated": "2019-01-18T10:09:35.000Z", "title": "Asymptotic of some sums", "authors": [ "Victor Leonidovich Volfson" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "The paper compares the asymptotic of the expressions $\\frac {1} {x} \\sum\\limits_{n \\leq x} {f(n)}$ and $\\sum\\limits_{n \\leq x} {\\frac {f(n)} {n}}$, $\\frac {1} {x} \\sum\\limits_{p \\leq x} {f(p)}$ and $\\sum\\limits_{p \\leq x} {\\frac {f(p)} {p}}$. The asymptotic of sums $\\sum\\limits_{n \\leq x} {\\frac {f(n)} {n}}$ and $\\sum\\limits_{p \\leq x} {\\frac {f(p)} {p}}$ ($n,p$ - respectively, positive and prime numbers) are determined if the asymptotic of sums are known, respectively: $\\sum\\limits_{n \\leq x} {f(n)}$,$\\sum\\limits_{p \\leq x} {f(p)}$.", "revisions": [ { "version": "v1", "updated": "2019-01-18T10:09:35.000Z" } ], "analyses": { "subjects": [ "11N37" ], "keywords": [ "asymptotic", "prime numbers" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }