arXiv Analytics

Sign in

arXiv:1901.02737 [math.FA]AbstractReferencesReviewsResources

Surjective isometries on a Banach space of analytic functions on the open unit disc

Takeshi Miura

Published 2019-01-09Version 1

Let $H(\mathbb{D})$ be the linear space of all analytic functions on the open unit disc $\mathbb{D}$. We define $\mathcal{S}^\infty$ by the linear subspace of all $f \in H(\mathbb{D})$ with bounded derivative $f'$ on $\mathbb{D}$. We give the characterization of surjective, not necessarily linear, isometries on $\mathcal{S}^\infty$ with respect to the following two norms: $\| f \|_\infty + \| f' \|_\infty$ and $|f(a)| + \| f' \|_\infty$ for $a \in \mathbb{D}$, where $\| \cdot \|_\infty$ is the supremum norm on $\mathbb{D}$.

Comments: 46 pages
Categories: math.FA
Subjects: 46J10
Related articles: Most relevant | Search more
arXiv:2409.11371 [math.FA] (Published 2024-09-17)
Cesàro operators on the space of analytic functions with logarithmic growth
arXiv:1609.00812 [math.FA] (Published 2016-09-03)
The Cesaro operator in growth Banach spaces of analytic functions
arXiv:2211.14081 [math.FA] (Published 2022-11-25)
Differentiable, Holomorphic, and Analytic Functions on Complex $Φ$-Algebras