{ "id": "1901.02737", "version": "v1", "published": "2019-01-09T13:37:54.000Z", "updated": "2019-01-09T13:37:54.000Z", "title": "Surjective isometries on a Banach space of analytic functions on the open unit disc", "authors": [ "Takeshi Miura" ], "comment": "46 pages", "categories": [ "math.FA" ], "abstract": "Let $H(\\mathbb{D})$ be the linear space of all analytic functions on the open unit disc $\\mathbb{D}$. We define $\\mathcal{S}^\\infty$ by the linear subspace of all $f \\in H(\\mathbb{D})$ with bounded derivative $f'$ on $\\mathbb{D}$. We give the characterization of surjective, not necessarily linear, isometries on $\\mathcal{S}^\\infty$ with respect to the following two norms: $\\| f \\|_\\infty + \\| f' \\|_\\infty$ and $|f(a)| + \\| f' \\|_\\infty$ for $a \\in \\mathbb{D}$, where $\\| \\cdot \\|_\\infty$ is the supremum norm on $\\mathbb{D}$.", "revisions": [ { "version": "v1", "updated": "2019-01-09T13:37:54.000Z" } ], "analyses": { "subjects": [ "46J10" ], "keywords": [ "open unit disc", "analytic functions", "banach space", "surjective isometries", "linear space" ], "note": { "typesetting": "TeX", "pages": 46, "language": "en", "license": "arXiv", "status": "editable" } } }