arXiv Analytics

Sign in

arXiv:1812.04094 [math.DS]AbstractReferencesReviewsResources

Indeterminacy loci of iterate maps in moduli space

Jan Kiwi, Hongming Nie

Published 2018-12-10Version 1

The moduli space $\mathrm{rat}_d$ of rational maps in one complex variable of degree $d \ge 2$ has a natural compactification by a projective variety $\overline{\mathrm{rat}}_d$ provided by geometric invariant theory. Given $n \ge 2$, the iteration map $\Phi_n : \mathrm{rat}_d \to\mathrm{rat}_{d^n}$, defined by $\Phi_n: [f] \mapsto [f^n]$, extends to a rational map $\Phi_n : \overline{\mathrm{rat}}_d\dashrightarrow \overline{\mathrm{rat}}_{d^n}$. We characterize the elements of $\overline{\mathrm{rat}}_d$ which lie in the indeterminacy locus of $\Phi_n$.

Comments: 34 pages, 2 figures
Categories: math.DS
Related articles: Most relevant | Search more
arXiv:1205.2743 [math.DS] (Published 2012-05-12)
Potential good reduction of degree 2 rational maps
arXiv:1705.05276 [math.DS] (Published 2017-05-15)
Hyperbolic components of rational maps: {Q}uantitative equidistribution and counting
arXiv:math/0412438 [math.DS] (Published 2004-12-21)
The boundary of the moduli space of quadratic rational maps