{ "id": "1812.04094", "version": "v1", "published": "2018-12-10T21:15:21.000Z", "updated": "2018-12-10T21:15:21.000Z", "title": "Indeterminacy loci of iterate maps in moduli space", "authors": [ "Jan Kiwi", "Hongming Nie" ], "comment": "34 pages, 2 figures", "categories": [ "math.DS" ], "abstract": "The moduli space $\\mathrm{rat}_d$ of rational maps in one complex variable of degree $d \\ge 2$ has a natural compactification by a projective variety $\\overline{\\mathrm{rat}}_d$ provided by geometric invariant theory. Given $n \\ge 2$, the iteration map $\\Phi_n : \\mathrm{rat}_d \\to\\mathrm{rat}_{d^n}$, defined by $\\Phi_n: [f] \\mapsto [f^n]$, extends to a rational map $\\Phi_n : \\overline{\\mathrm{rat}}_d\\dashrightarrow \\overline{\\mathrm{rat}}_{d^n}$. We characterize the elements of $\\overline{\\mathrm{rat}}_d$ which lie in the indeterminacy locus of $\\Phi_n$.", "revisions": [ { "version": "v1", "updated": "2018-12-10T21:15:21.000Z" } ], "analyses": { "keywords": [ "moduli space", "indeterminacy locus", "iterate maps", "rational map", "geometric invariant theory" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }