arXiv Analytics

Sign in

arXiv:1811.12619 [math.AP]AbstractReferencesReviewsResources

Dirichlet and Neumann problems for elliptic equations with singular drifts on Lipschitz domains

Hyunseok Kim, Hyunwoo Kwon

Published 2018-11-30Version 1

We consider the Dirichlet and Neumann problems for second-order linear elliptic equations: $$-\triangle u +\operatorname{div}(u\mathbf{b}) =f \quad\text{ and }\quad -\triangle v -\mathbf{b} \cdot \nabla v =g$$ in a bounded Lipschitz domain $\Omega$ in $\mathbb{R}^n$ $(n\geq 3)$, where $\mathbf{b}:\Omega \rightarrow \mathbb{R}^n$ is a given vector field. Under the assumption that $\mathbf{b} \in L^{n}(\Omega)^n$, we first establish existence and uniqueness of solutions in $L_{\alpha}^{p}(\Omega)$ for the Dirichlet and Neumann problems. Here $L_{\alpha}^{p}(\Omega)$ denotes the Sobolev space (or Bessel potential space) with the pair $(\alpha,p)$ satisfying certain conditions. These results extend the classical works of Jerison-Kenig (1995, JFA) and Fabes-Mendez-Mitrea (1998, JFA) for the Poisson equation. We also prove existence and uniqueness of solutions of the Dirichlet problem with boundary data in $L^{2}(\partial\Omega)$.

Related articles: Most relevant | Search more
arXiv:2204.02831 [math.AP] (Published 2022-04-06)
The Dirichlet and Neumann problems in Lipschitz and in $\mathscr{C}^{1, 1}$ domains. Abstract
arXiv:2306.14307 [math.AP] (Published 2023-06-25)
Homogenization of diffusion processes with singular drifts and potentials via unfolding method
arXiv:1911.05194 [math.AP] (Published 2019-11-10)
Equivalence of Dirichlet and Neumann problems for the Laplace operator in elliptical and doubly-connected regions