{ "id": "1811.12619", "version": "v1", "published": "2018-11-30T05:24:30.000Z", "updated": "2018-11-30T05:24:30.000Z", "title": "Dirichlet and Neumann problems for elliptic equations with singular drifts on Lipschitz domains", "authors": [ "Hyunseok Kim", "Hyunwoo Kwon" ], "comment": "33 pages, 4 figures", "categories": [ "math.AP" ], "abstract": "We consider the Dirichlet and Neumann problems for second-order linear elliptic equations: $$-\\triangle u +\\operatorname{div}(u\\mathbf{b}) =f \\quad\\text{ and }\\quad -\\triangle v -\\mathbf{b} \\cdot \\nabla v =g$$ in a bounded Lipschitz domain $\\Omega$ in $\\mathbb{R}^n$ $(n\\geq 3)$, where $\\mathbf{b}:\\Omega \\rightarrow \\mathbb{R}^n$ is a given vector field. Under the assumption that $\\mathbf{b} \\in L^{n}(\\Omega)^n$, we first establish existence and uniqueness of solutions in $L_{\\alpha}^{p}(\\Omega)$ for the Dirichlet and Neumann problems. Here $L_{\\alpha}^{p}(\\Omega)$ denotes the Sobolev space (or Bessel potential space) with the pair $(\\alpha,p)$ satisfying certain conditions. These results extend the classical works of Jerison-Kenig (1995, JFA) and Fabes-Mendez-Mitrea (1998, JFA) for the Poisson equation. We also prove existence and uniqueness of solutions of the Dirichlet problem with boundary data in $L^{2}(\\partial\\Omega)$.", "revisions": [ { "version": "v1", "updated": "2018-11-30T05:24:30.000Z" } ], "analyses": { "subjects": [ "35J15", "35J25" ], "keywords": [ "neumann problems", "singular drifts", "second-order linear elliptic equations", "bessel potential space", "bounded lipschitz domain" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }