arXiv:1811.07960 [math.AT]AbstractReferencesReviewsResources
The slice spectral sequence of a $C_4$-equivariant height-4 Lubin-Tate theory
Michael A. Hill, XiaoLin Danny Shi, Guozhen Wang, Zhouli Xu
Published 2018-11-19, updated 2019-08-24Version 2
We completely compute the slice spectral sequence of the $C_4$-spectrum $BP^{((C_4))}\langle 2 \rangle$. After periodization and $K(4)$-localization, this spectrum is equivalent to a height-4 Lubin-Tate theory $E_4$ with $C_4$-action induced from the Goerss-Hopkins-Miller theorem. In particular, our computation shows that $E_4^{hC_{12}}$ is 384-periodic.
Comments: New introduction. 107 pages, 45 figures. Comments welcome
Categories: math.AT
Related articles: Most relevant | Search more
arXiv:1908.11321 [math.AT] (Published 2019-08-29)
The Lubin-Tate Theory of Configuration Spaces: I
arXiv:1510.06056 [math.AT] (Published 2015-10-20)
The Slice Spectral Sequence for certain $RO(C_{p^n})$-graded Suspensions of $H\underline{\mathbb Z}$
arXiv:1502.07611 [math.AT] (Published 2015-02-26)
The slice spectral sequence for the $C_{4}$ analog of real $K$-theory