{ "id": "1811.07960", "version": "v2", "published": "2018-11-19T20:20:22.000Z", "updated": "2019-08-24T02:41:35.000Z", "title": "The slice spectral sequence of a $C_4$-equivariant height-4 Lubin-Tate theory", "authors": [ "Michael A. Hill", "XiaoLin Danny Shi", "Guozhen Wang", "Zhouli Xu" ], "comment": "New introduction. 107 pages, 45 figures. Comments welcome", "categories": [ "math.AT" ], "abstract": "We completely compute the slice spectral sequence of the $C_4$-spectrum $BP^{((C_4))}\\langle 2 \\rangle$. After periodization and $K(4)$-localization, this spectrum is equivalent to a height-4 Lubin-Tate theory $E_4$ with $C_4$-action induced from the Goerss-Hopkins-Miller theorem. In particular, our computation shows that $E_4^{hC_{12}}$ is 384-periodic.", "revisions": [ { "version": "v2", "updated": "2019-08-24T02:41:35.000Z" } ], "analyses": { "keywords": [ "slice spectral sequence", "lubin-tate theory", "equivariant", "goerss-hopkins-miller theorem" ], "note": { "typesetting": "TeX", "pages": 107, "language": "en", "license": "arXiv", "status": "editable" } } }