arXiv Analytics

Sign in

arXiv:1811.07196 [math.CO]AbstractReferencesReviewsResources

Eigenvalues of symmetrized shuffling operators

Nadia Lafrenière

Published 2018-11-17, updated 2019-02-27Version 2

This paper describes a combinatorial way of obtaining all the eigenvalues of the symmetrized shuffling operators introduced by Victor Reiner, Franco Saliola and Volkmar Welker. It allows us to prove their conjecture that these eigenvalues are integers. This work generalizes the case of the random-to-random Markov chain.

Comments: 12 pages. Extended abstract accepted for FPSAC 2019. It will appear in S\'eminaire Lotharingien de combinatoire
Categories: math.CO
Subjects: 05E99, 20C30, 60J10
Related articles: Most relevant | Search more
arXiv:1912.07718 [math.CO] (Published 2019-12-16)
Valeurs propres des opérateurs de mélanges symétrisés
arXiv:1509.08580 [math.CO] (Published 2015-09-29)
Spectral analysis of random-to-random Markov chains
arXiv:1701.03685 [math.CO] (Published 2017-01-13)
The Eigenvalues of the Graphs $D(4,q)$