{ "id": "1811.07196", "version": "v2", "published": "2018-11-17T17:34:48.000Z", "updated": "2019-02-27T21:36:35.000Z", "title": "Eigenvalues of symmetrized shuffling operators", "authors": [ "Nadia Lafrenière" ], "comment": "12 pages. Extended abstract accepted for FPSAC 2019. It will appear in S\\'eminaire Lotharingien de combinatoire", "categories": [ "math.CO" ], "abstract": "This paper describes a combinatorial way of obtaining all the eigenvalues of the symmetrized shuffling operators introduced by Victor Reiner, Franco Saliola and Volkmar Welker. It allows us to prove their conjecture that these eigenvalues are integers. This work generalizes the case of the random-to-random Markov chain.", "revisions": [ { "version": "v2", "updated": "2019-02-27T21:36:35.000Z" } ], "analyses": { "subjects": [ "05E99", "20C30", "60J10" ], "keywords": [ "symmetrized shuffling operators", "eigenvalues", "random-to-random markov chain", "combinatorial way", "volkmar welker" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }