arXiv:1811.01654 [math.NT]AbstractReferencesReviewsResources
Ramanujan expansions of arithmetic functions of several variables over $\mathbb{F}_{q}[T]$
Published 2018-11-05Version 1
Let $\mathbb{A}=\mathbb{F}_{q}[T]$ be the polynomial ring over finite field $\mathbb{F}_{q}$, and $\mathbb{A}_{+}$ be the set of monic polynomials in $\mathbb{A}$. In this paper, we show that the arithmetic functions of multi-variables over $\mathbb{A}_{+}$ can be expanded through the polynomial Ramanujan sums and the unitary polynomial Ramanujan sums. These are analogues of classical results over $\mathbb{N}$ by Winter, Delange and T\'oth.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1811.02556 [math.NT] (Published 2018-11-06)
On error term estimates à la Walfisz for mean values of arithmetic functions
On a generalization of arithmetic functions and the Ramanujan sums
arXiv:math/0105219 [math.NT] (Published 2001-05-27)
Factorization of integers and arithmetic functions