{ "id": "1811.01654", "version": "v1", "published": "2018-11-05T13:01:40.000Z", "updated": "2018-11-05T13:01:40.000Z", "title": "Ramanujan expansions of arithmetic functions of several variables over $\\mathbb{F}_{q}[T]$", "authors": [ "Tianfang Qi", "Su Hu" ], "categories": [ "math.NT" ], "abstract": "Let $\\mathbb{A}=\\mathbb{F}_{q}[T]$ be the polynomial ring over finite field $\\mathbb{F}_{q}$, and $\\mathbb{A}_{+}$ be the set of monic polynomials in $\\mathbb{A}$. In this paper, we show that the arithmetic functions of multi-variables over $\\mathbb{A}_{+}$ can be expanded through the polynomial Ramanujan sums and the unitary polynomial Ramanujan sums. These are analogues of classical results over $\\mathbb{N}$ by Winter, Delange and T\\'oth.", "revisions": [ { "version": "v1", "updated": "2018-11-05T13:01:40.000Z" } ], "analyses": { "subjects": [ "11T55", "11T24", "11L05" ], "keywords": [ "arithmetic functions", "ramanujan expansions", "unitary polynomial ramanujan sums", "finite field", "monic polynomials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }