arXiv Analytics

Sign in

arXiv:1810.10876 [math.NT]AbstractReferencesReviewsResources

An extension of a result of Erdös and Zaremba

Michel Weber

Published 2018-10-25Version 1

Erd\"os and Zaremba showed that $ \limsup_{n\to \infty} \frac{\Phi(n)}{(\log\log n)^2}=e^\g$, $\g$ being Euler's constant, where $\Phi(n)=\sum_{d|n} \frac{\log d}{d}$. We extend this result to the function $\Psi(n)= \sum_{d|n} \frac{(\log d )(\log\log d)}{d}$ and some other functions. We show that $ \limsup_{n\to \infty}\, \frac{\Psi(n)}{(\log\log n)^2(\log\log\log n)}\,=\, e^\g$. The proof requires to develop a new approach. As an application, we prove that for any $\eta>1$, any finite sequence of reals $\{c_k, k\in K\}$, $\sum_{k,\ell\in K} c_kc_\ell \, \frac{\gcd(k,\ell)^{2}}{k\ell} \le C(\eta) \sum_{\nu\in K} c_\nu^2(\log\log\log \nu)^\eta \Psi(\nu) $, where $C(\eta)$ depends on $\eta$ only. This improves a recent result obtained by the author.

Comments: 22 pages
Categories: math.NT
Subjects: 11D57, 11A05, 11A25
Related articles: Most relevant | Search more
arXiv:math/0112321 [math.NT] (Published 2001-12-05)
Abeliants and their application to an elementary construction of Jacobians
arXiv:1206.0486 [math.NT] (Published 2012-06-03, updated 2012-08-17)
Complete Residue Systems: A Primer and an Application
arXiv:1307.1413 [math.NT] (Published 2013-07-04)
On mod $p^c$ transfer and applications