{ "id": "1810.10876", "version": "v1", "published": "2018-10-25T13:40:00.000Z", "updated": "2018-10-25T13:40:00.000Z", "title": "An extension of a result of Erdös and Zaremba", "authors": [ "Michel Weber" ], "comment": "22 pages", "categories": [ "math.NT" ], "abstract": "Erd\\\"os and Zaremba showed that $ \\limsup_{n\\to \\infty} \\frac{\\Phi(n)}{(\\log\\log n)^2}=e^\\g$, $\\g$ being Euler's constant, where $\\Phi(n)=\\sum_{d|n} \\frac{\\log d}{d}$. We extend this result to the function $\\Psi(n)= \\sum_{d|n} \\frac{(\\log d )(\\log\\log d)}{d}$ and some other functions. We show that $ \\limsup_{n\\to \\infty}\\, \\frac{\\Psi(n)}{(\\log\\log n)^2(\\log\\log\\log n)}\\,=\\, e^\\g$. The proof requires to develop a new approach. As an application, we prove that for any $\\eta>1$, any finite sequence of reals $\\{c_k, k\\in K\\}$, $\\sum_{k,\\ell\\in K} c_kc_\\ell \\, \\frac{\\gcd(k,\\ell)^{2}}{k\\ell} \\le C(\\eta) \\sum_{\\nu\\in K} c_\\nu^2(\\log\\log\\log \\nu)^\\eta \\Psi(\\nu) $, where $C(\\eta)$ depends on $\\eta$ only. This improves a recent result obtained by the author.", "revisions": [ { "version": "v1", "updated": "2018-10-25T13:40:00.000Z" } ], "analyses": { "subjects": [ "11D57", "11A05", "11A25" ], "keywords": [ "finite sequence", "eulers constant", "application" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }