arXiv Analytics

Sign in

arXiv:1810.09861 [math.PR]AbstractReferencesReviewsResources

Persistence exponents via perturbation theory: AR(1)-processes

Frank Aurzada, Marvin Kettner

Published 2018-10-23Version 1

For AR(1)-processes $X_n=\rho X_{n-1}+\xi_n$, $n\in\mathbb{N}$, where $\rho\in\mathbb{R}$ and $(\xi_i)_{i\in\mathbb{N}}$ is an i.i.d. sequence of random variables, we study the persistence probabilities $\mathbb{P}(X_0\ge 0,\dots, X_N\ge 0)$ for $N\to\infty$. For a wide class of Markov processes a recent result [Aurzada, Mukherjee, Zeitouni; arXiv:1703.06447; 2017] shows that these probabilities decrease exponentially fast and that the rate of decay can be identified as an eigenvalue of some integral operator. We discuss a perturbation technique to determine a series expansion of the eigenvalue in the parameter $\rho$ for normally distributed AR(1)-processes.

Related articles: Most relevant | Search more
arXiv:2006.09047 [math.PR] (Published 2020-06-16)
Random potentials for Markov processes
arXiv:0706.4193 [math.PR] (Published 2007-06-28)
Transportation-information inequalities for Markov processes
arXiv:1210.7193 [math.PR] (Published 2012-10-26, updated 2014-02-17)
On the notion(s) of duality for Markov processes