{ "id": "1810.09861", "version": "v1", "published": "2018-10-23T13:52:11.000Z", "updated": "2018-10-23T13:52:11.000Z", "title": "Persistence exponents via perturbation theory: AR(1)-processes", "authors": [ "Frank Aurzada", "Marvin Kettner" ], "categories": [ "math.PR", "math.FA" ], "abstract": "For AR(1)-processes $X_n=\\rho X_{n-1}+\\xi_n$, $n\\in\\mathbb{N}$, where $\\rho\\in\\mathbb{R}$ and $(\\xi_i)_{i\\in\\mathbb{N}}$ is an i.i.d. sequence of random variables, we study the persistence probabilities $\\mathbb{P}(X_0\\ge 0,\\dots, X_N\\ge 0)$ for $N\\to\\infty$. For a wide class of Markov processes a recent result [Aurzada, Mukherjee, Zeitouni; arXiv:1703.06447; 2017] shows that these probabilities decrease exponentially fast and that the rate of decay can be identified as an eigenvalue of some integral operator. We discuss a perturbation technique to determine a series expansion of the eigenvalue in the parameter $\\rho$ for normally distributed AR(1)-processes.", "revisions": [ { "version": "v1", "updated": "2018-10-23T13:52:11.000Z" } ], "analyses": { "keywords": [ "perturbation theory", "persistence exponents", "probabilities decrease exponentially fast", "series expansion", "markov processes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }