arXiv Analytics

Sign in

arXiv:1810.09763 [math.NT]AbstractReferencesReviewsResources

Linear Independence of Harmonic Numbers over the field of Algebraic Numbers

Tapas Chatterjee, Sonika Dhillon

Published 2018-10-23Version 1

Let $H_n =\sum\limits_{k=1}^n \frac{1}{k}$ be the $n$-th harmonic number. Euler extended it to complex arguments and defined $H_r$ for any complex number $r$ except for the negative integers. In this paper, we give a new proof of the transcendental nature of $H_r$ for rational $r$. For some special values of $q>1,$ we give an upper bound for the number of linearly independent harmonic numbers $H_{a/q}$ with $ 1 \leq a \leq q$ over the field of algebraic numbers. Also, for any finite set of odd primes $J$ with $|J|=n,$ define $$W_J=\overline{\mathbb{Q}}-\text {span of } \{ H_1, \ H_{a_{j_i}/q_i} | \ 1 \leq a_{j_i} \leq q_i -1, \ 1 \leq j_i \leq q_i-1, \ \ \forall q_i \in J\}.$$ Finally, we show that $$\text{ dim }_{\overline{\mathbb{Q}}} ~W_J=\sum\limits_{\substack{i=1 \\ q_i \in J}}^n \frac{\phi (q_i )}{2} + 2.$$

Comments: To appear in the Ramanujan Journal
Categories: math.NT
Subjects: 11J81, 11J86, 11J91
Related articles: Most relevant | Search more
arXiv:2502.03154 [math.NT] (Published 2025-02-05)
Infinite products with algebraic numbers
arXiv:1808.09944 [math.NT] (Published 2018-08-29)
On a conjecture of Livingston
arXiv:2308.15302 [math.NT] (Published 2023-08-29)
Transcendence of certain sequences of algebraic numbers