{ "id": "1810.09763", "version": "v1", "published": "2018-10-23T10:39:42.000Z", "updated": "2018-10-23T10:39:42.000Z", "title": "Linear Independence of Harmonic Numbers over the field of Algebraic Numbers", "authors": [ "Tapas Chatterjee", "Sonika Dhillon" ], "comment": "To appear in the Ramanujan Journal", "categories": [ "math.NT" ], "abstract": "Let $H_n =\\sum\\limits_{k=1}^n \\frac{1}{k}$ be the $n$-th harmonic number. Euler extended it to complex arguments and defined $H_r$ for any complex number $r$ except for the negative integers. In this paper, we give a new proof of the transcendental nature of $H_r$ for rational $r$. For some special values of $q>1,$ we give an upper bound for the number of linearly independent harmonic numbers $H_{a/q}$ with $ 1 \\leq a \\leq q$ over the field of algebraic numbers. Also, for any finite set of odd primes $J$ with $|J|=n,$ define $$W_J=\\overline{\\mathbb{Q}}-\\text {span of } \\{ H_1, \\ H_{a_{j_i}/q_i} | \\ 1 \\leq a_{j_i} \\leq q_i -1, \\ 1 \\leq j_i \\leq q_i-1, \\ \\ \\forall q_i \\in J\\}.$$ Finally, we show that $$\\text{ dim }_{\\overline{\\mathbb{Q}}} ~W_J=\\sum\\limits_{\\substack{i=1 \\\\ q_i \\in J}}^n \\frac{\\phi (q_i )}{2} + 2.$$", "revisions": [ { "version": "v1", "updated": "2018-10-23T10:39:42.000Z" } ], "analyses": { "subjects": [ "11J81", "11J86", "11J91" ], "keywords": [ "algebraic numbers", "linear independence", "linearly independent harmonic numbers", "th harmonic number", "finite set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }