arXiv:1810.02177 [math.PR]AbstractReferencesReviewsResources
Berry-Esséen bound for the Parameter Estimation of Fractional Ornstein-Uhlenbeck Processes with the Hurst Parameter 0<H<1/2
Published 2018-10-04Version 1
For an Ornstein-Uhlenbeck process driven by a fractional Brownian motion with Hurst parameter 0<H<1/2, one shows the Berry-Ess\'{e}en bound of the least squares estimator of the drift parameter. Thus, a problem left in the previous paper (Chen, Kuang and Li in Stochastics and Dynamics, 2019+) is solved, where the Berry-Ess\'{e}en bound of the least squares estimator is proved for 1/2<=H<=3/4. An approach based on Malliavin calculus given by Kim and Park \cite{kim 3} is used
Comments: 14 pages
Categories: math.PR
Related articles: Most relevant | Search more
arXiv:1806.01487 [math.PR] (Published 2018-06-05)
Berry-Esseen bound for the Parameter Estimation of Fractional Ornstein-Uhlenbeck Processes
arXiv:0901.4925 [math.PR] (Published 2009-01-30)
Parameter estimation for fractional Ornstein-Uhlenbeck processes
Berry-Esséen bounds for the least squares estimator for discretely observed fractional Ornstein-Uhlenbeck processes