arXiv:1810.00990 [math.NT]AbstractReferencesReviewsResources
Finite index theorems for iterated Galois groups of unicritical polynomials
Andrew Bridy, John R. Doyle, Dragos Ghioca, Liang-Chung Hsia, Thomas J. Tucker
Published 2018-10-01Version 1
Let $K$ be the function field of a smooth, irreducible curve defined over $\overline{\mathbb{Q}}$. Let $f\in K[x]$ be of the form $f(x)=x^q+c$ where $q = p^{r}, r \ge 1,$ is a power of the prime number $p$, and let $\beta\in \overline{K}$. For all $n\in\mathbb{N}\cup\{\infty\}$, the Galois groups $G_n(\beta)=\mathop{\rm{Gal}}(K(f^{-n}(\beta))/K(\beta))$ embed into $[C_q]^n$, the $n$-fold wreath product of the cyclic group $C_q$. We show that if $f$ is not isotrivial, then $[[C_q]^\infty:G_\infty(\beta)]<\infty$ unless $\beta$ is postcritical or periodic. We are also able to prove that if $f_1(x)=x^q+c_1$ and $f_2(x)=x^q+c_2$ are two such distinct polynomials, then the fields $\bigcup_{n=1}^\infty K(f_1^{-n}(\beta))$ and $\bigcup_{n=1}^\infty K(f_2^{-n}(\beta))$ are disjoint over a finite extension of $K$.