{ "id": "1810.00990", "version": "v1", "published": "2018-10-01T21:51:26.000Z", "updated": "2018-10-01T21:51:26.000Z", "title": "Finite index theorems for iterated Galois groups of unicritical polynomials", "authors": [ "Andrew Bridy", "John R. Doyle", "Dragos Ghioca", "Liang-Chung Hsia", "Thomas J. Tucker" ], "comment": "20 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "Let $K$ be the function field of a smooth, irreducible curve defined over $\\overline{\\mathbb{Q}}$. Let $f\\in K[x]$ be of the form $f(x)=x^q+c$ where $q = p^{r}, r \\ge 1,$ is a power of the prime number $p$, and let $\\beta\\in \\overline{K}$. For all $n\\in\\mathbb{N}\\cup\\{\\infty\\}$, the Galois groups $G_n(\\beta)=\\mathop{\\rm{Gal}}(K(f^{-n}(\\beta))/K(\\beta))$ embed into $[C_q]^n$, the $n$-fold wreath product of the cyclic group $C_q$. We show that if $f$ is not isotrivial, then $[[C_q]^\\infty:G_\\infty(\\beta)]<\\infty$ unless $\\beta$ is postcritical or periodic. We are also able to prove that if $f_1(x)=x^q+c_1$ and $f_2(x)=x^q+c_2$ are two such distinct polynomials, then the fields $\\bigcup_{n=1}^\\infty K(f_1^{-n}(\\beta))$ and $\\bigcup_{n=1}^\\infty K(f_2^{-n}(\\beta))$ are disjoint over a finite extension of $K$.", "revisions": [ { "version": "v1", "updated": "2018-10-01T21:51:26.000Z" } ], "analyses": { "subjects": [ "37P15", "11G50", "11R32", "14G25", "37P05", "37P30" ], "keywords": [ "finite index theorems", "iterated galois groups", "unicritical polynomials", "fold wreath product", "prime number" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }