arXiv:1809.07095 [math.GR]AbstractReferencesReviewsResources
Some properties of Neumann quasigroups
Natalia N. Didurik, Victor A. Shcherbacov
Published 2018-09-19Version 1
Any Neumann quasigroup $(Q, \cdot)$ (quasigroup with Neumann identity $ x \cdot(yz \cdot yx) = z$ is called Neumann quasigroup) can be presented in the form $x\cdot y = x-y$, where $(Q, +)$ is an abelian group. Automorphism group of Neumann quasigroup coincides with the group $Aut(Q, +)$. Any Schweizer quasigroup (quasigroup with Schweizer identity $xy \cdot xz = zy$ is called Schweizer quasigroup) is a Neumann quasigroup and vice versa. Any Neumann quasigroup is a GA-quasigroup.
Related articles: Most relevant | Search more
arXiv:1712.06516 [math.GR] (Published 2017-12-18)
Automorphisms of dihedral-like automorphic loops
arXiv:2308.08059 [math.GR] (Published 2023-08-15)
Topological Properties of Almost Abelian Groups
arXiv:1310.4625 [math.GR] (Published 2013-10-17)
Inertial endomorphisms of an abelian group