{ "id": "1809.07095", "version": "v1", "published": "2018-09-19T09:32:55.000Z", "updated": "2018-09-19T09:32:55.000Z", "title": "Some properties of Neumann quasigroups", "authors": [ "Natalia N. Didurik", "Victor A. Shcherbacov" ], "comment": "7 pages", "categories": [ "math.GR" ], "abstract": "Any Neumann quasigroup $(Q, \\cdot)$ (quasigroup with Neumann identity $ x \\cdot(yz \\cdot yx) = z$ is called Neumann quasigroup) can be presented in the form $x\\cdot y = x-y$, where $(Q, +)$ is an abelian group. Automorphism group of Neumann quasigroup coincides with the group $Aut(Q, +)$. Any Schweizer quasigroup (quasigroup with Schweizer identity $xy \\cdot xz = zy$ is called Schweizer quasigroup) is a Neumann quasigroup and vice versa. Any Neumann quasigroup is a GA-quasigroup.", "revisions": [ { "version": "v1", "updated": "2018-09-19T09:32:55.000Z" } ], "analyses": { "subjects": [ "20N05" ], "keywords": [ "properties", "schweizer quasigroup", "neumann quasigroup coincides", "abelian group", "automorphism group" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }