arXiv Analytics

Sign in

arXiv:1809.06807 [math.GN]AbstractReferencesReviewsResources

Disconnectedness properties of Hyperspaces

Rodrigo Hernández-Gutiérrez, Angel Tamariz-Mascarúa

Published 2018-09-18Version 1

Let $X$ be a Hausdorff space and let $\mathcal{H}$ be one of the hyperspaces $CL(X)$, $\mathcal{K}(X)$, $\mathcal{F}(X)$ or $\mathcal{F}_n(X)$ ($n$ a positive integer) with the Vietoris topology. We study the following disconnectedness properties for $\mathcal{H}$: extremal disconnectedness, being a $F^\prime$-space, $P$-space or weak $P$-space and hereditary disconnectedness. Our main result states: if $X$ is Hausdorff and $F\subset X$ is a closed subset such that $(a)$ both $F$ and $X-F$ are totally disconnected, $(b)$ the quotient $X/F$ is hereditarily disconnected, then $\mathcal{K}(X)$ is hereditarily disconnected. We also show an example proving that this result cannot be reversed.

Journal: Comment.Math.Univ.Carolin. 52,4 (2011) 569-591
Categories: math.GN
Subjects: 54B20, 54G05, 54G10, 54G12, 54G20
Related articles: Most relevant | Search more
arXiv:1701.01181 [math.GN] (Published 2017-01-04)
Vietoris-type Topologies on Hyperspaces
arXiv:1911.12940 [math.GN] (Published 2019-11-29)
Some generalized metric properties on hyperspaces with the Vietoris topology
arXiv:1908.02845 [math.GN] (Published 2019-08-07)
Hyperspaces of infinite compacta with finitely many accumulation points