{ "id": "1809.06807", "version": "v1", "published": "2018-09-18T16:00:10.000Z", "updated": "2018-09-18T16:00:10.000Z", "title": "Disconnectedness properties of Hyperspaces", "authors": [ "Rodrigo Hernández-Gutiérrez", "Angel Tamariz-Mascarúa" ], "journal": "Comment.Math.Univ.Carolin. 52,4 (2011) 569-591", "categories": [ "math.GN" ], "abstract": "Let $X$ be a Hausdorff space and let $\\mathcal{H}$ be one of the hyperspaces $CL(X)$, $\\mathcal{K}(X)$, $\\mathcal{F}(X)$ or $\\mathcal{F}_n(X)$ ($n$ a positive integer) with the Vietoris topology. We study the following disconnectedness properties for $\\mathcal{H}$: extremal disconnectedness, being a $F^\\prime$-space, $P$-space or weak $P$-space and hereditary disconnectedness. Our main result states: if $X$ is Hausdorff and $F\\subset X$ is a closed subset such that $(a)$ both $F$ and $X-F$ are totally disconnected, $(b)$ the quotient $X/F$ is hereditarily disconnected, then $\\mathcal{K}(X)$ is hereditarily disconnected. We also show an example proving that this result cannot be reversed.", "revisions": [ { "version": "v1", "updated": "2018-09-18T16:00:10.000Z" } ], "analyses": { "subjects": [ "54B20", "54G05", "54G10", "54G12", "54G20" ], "keywords": [ "disconnectedness properties", "hyperspaces", "main result states", "extremal disconnectedness", "vietoris topology" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }