arXiv:1808.10348 [math.RT]AbstractReferencesReviewsResources
Discretely decomposable restrictions of $(\mathfrak{g},K)$-modules for Klein four symmetric pairs of exceptional Lie groups of Hermitian type
Published 2018-08-30Version 1
Let $(G,G')$ be a Klein four symmetric pair. If $\pi_K$ is a unitarizable simple $(\mathrm{g},K)$-module, the author shows some necessary conditions when $\pi_K$ is discretely decomposable as a $(\mathfrak{g}',K')$-module. In particular, if $G$ is an exceptional Lie group of Hermitian type, i.e., $G=\mathrm{E}_{6(-14)}$ or $\mathrm{E}_{7(-25)}$, the author classifies all the Klein four symmetric pairs $(G,G')$ such that there exists at least one unitarizable simple $(\mathfrak{g},K)$-module $\pi_K$ that is discretely decomposable as a $(\mathfrak{g}',K')$-module.
Related articles: Most relevant | Search more
arXiv:1910.14457 [math.RT] (Published 2019-10-30)
A criterion for discrete branching laws for Klein four symmetric pairs and its application to $E_{6(-14)}$
Classification of symmetric pairs with discretely decomposable restrictions of (g,K)-modules
arXiv:1908.04723 [math.RT] (Published 2019-08-13)
On the branching rules for Klein four symmetric pairs