{ "id": "1808.10348", "version": "v1", "published": "2018-08-30T15:20:12.000Z", "updated": "2018-08-30T15:20:12.000Z", "title": "Discretely decomposable restrictions of $(\\mathfrak{g},K)$-modules for Klein four symmetric pairs of exceptional Lie groups of Hermitian type", "authors": [ "Haian He" ], "comment": "7 pages, 1 figure", "categories": [ "math.RT" ], "abstract": "Let $(G,G')$ be a Klein four symmetric pair. If $\\pi_K$ is a unitarizable simple $(\\mathrm{g},K)$-module, the author shows some necessary conditions when $\\pi_K$ is discretely decomposable as a $(\\mathfrak{g}',K')$-module. In particular, if $G$ is an exceptional Lie group of Hermitian type, i.e., $G=\\mathrm{E}_{6(-14)}$ or $\\mathrm{E}_{7(-25)}$, the author classifies all the Klein four symmetric pairs $(G,G')$ such that there exists at least one unitarizable simple $(\\mathfrak{g},K)$-module $\\pi_K$ that is discretely decomposable as a $(\\mathfrak{g}',K')$-module.", "revisions": [ { "version": "v1", "updated": "2018-08-30T15:20:12.000Z" } ], "analyses": { "subjects": [ "22E46" ], "keywords": [ "exceptional lie group", "symmetric pair", "discretely decomposable restrictions", "hermitian type", "unitarizable simple" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }