arXiv:1808.09245 [math.CO]AbstractReferencesReviewsResources
Gallai-Ramsey numbers of odd cycles
Zhao Wang, Yaping Mao, Colton Magnant, Ingo Sciermeyer, Jinyu Zou
Published 2018-08-28Version 1
Given two graphs $G$ and $H$ and a positive integer $k$, the $k$-color Gallai-Ramsey number, denoted by $gr_{k}(G : H)$, is the minimum integer $N$ such that for all $n \geq N$, every $k$-coloring of the edges of $K_{n}$ contains either a rainbow copy of $G$ or a monochromatic copy of $H$. We prove that $gr_{k} (K_{3} : C_{2\ell + 1}) = \ell \cdot 2^{k} + 1$ for all $k \geq 1$ and $\ell \geq 3$.
Related articles: Most relevant | Search more
arXiv:2007.02059 [math.CO] (Published 2020-07-04)
Gallai-Ramsey numbers for monochromatic $K_4^{+}$ or $K_{3}$
arXiv:1905.07615 [math.CO] (Published 2019-05-18)
Gallai-Ramsey number of an 8-cycle
arXiv:1811.06134 [math.CO] (Published 2018-11-15)
Gallai-Ramsey numbers for a class of graphs with five vertices