{ "id": "1808.09245", "version": "v1", "published": "2018-08-28T12:11:09.000Z", "updated": "2018-08-28T12:11:09.000Z", "title": "Gallai-Ramsey numbers of odd cycles", "authors": [ "Zhao Wang", "Yaping Mao", "Colton Magnant", "Ingo Sciermeyer", "Jinyu Zou" ], "categories": [ "math.CO" ], "abstract": "Given two graphs $G$ and $H$ and a positive integer $k$, the $k$-color Gallai-Ramsey number, denoted by $gr_{k}(G : H)$, is the minimum integer $N$ such that for all $n \\geq N$, every $k$-coloring of the edges of $K_{n}$ contains either a rainbow copy of $G$ or a monochromatic copy of $H$. We prove that $gr_{k} (K_{3} : C_{2\\ell + 1}) = \\ell \\cdot 2^{k} + 1$ for all $k \\geq 1$ and $\\ell \\geq 3$.", "revisions": [ { "version": "v1", "updated": "2018-08-28T12:11:09.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "odd cycles", "color gallai-ramsey number", "minimum integer", "monochromatic copy", "rainbow copy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }