arXiv Analytics

Sign in

arXiv:1808.09148 [math.AP]AbstractReferencesReviewsResources

Note on semiclassical states for the Schrödinger equation with nonautonomous nonlinearities

Bartosz Bieganowski, Jarosław Mederski

Published 2018-08-28Version 1

We consider the following Schr\"{o}dinger equation $$ - \hslash ^2 \Delta u + V(x)u = \Gamma(x) f(u) \quad \mathrm{in} \ \mathbb{R}^N, $$ where $u \in H^1 (\mathbb{R}^N)$, $u > 0$, $\hslash > 0$ and $f$ is superlinear and subcritical nonlinear term. We show that if $V$ attains local minimum and $\Gamma$ attains global maximum at the same point or $V$ attains global minimum and $\Gamma$ attains local maximum at the same point, then there exists a positive solution for sufficiently small $\hslash>0$.

Related articles: Most relevant | Search more
arXiv:1905.04542 [math.AP] (Published 2019-05-11)
Bound states for the Schrödinger equation with mixed-type nonlinearites
arXiv:1510.06681 [math.AP] (Published 2015-10-22)
The Schrödinger Equation in the Mean-Field and Semiclassical Regime
arXiv:math/0501125 [math.AP] (Published 2005-01-09)
Some remarks on the Schrödinger equation with a potential in $L^{r}_{t}L^{s}_{x}$