{ "id": "1808.09148", "version": "v1", "published": "2018-08-28T07:31:28.000Z", "updated": "2018-08-28T07:31:28.000Z", "title": "Note on semiclassical states for the Schrödinger equation with nonautonomous nonlinearities", "authors": [ "Bartosz Bieganowski", "Jarosław Mederski" ], "categories": [ "math.AP" ], "abstract": "We consider the following Schr\\\"{o}dinger equation $$ - \\hslash ^2 \\Delta u + V(x)u = \\Gamma(x) f(u) \\quad \\mathrm{in} \\ \\mathbb{R}^N, $$ where $u \\in H^1 (\\mathbb{R}^N)$, $u > 0$, $\\hslash > 0$ and $f$ is superlinear and subcritical nonlinear term. We show that if $V$ attains local minimum and $\\Gamma$ attains global maximum at the same point or $V$ attains global minimum and $\\Gamma$ attains local maximum at the same point, then there exists a positive solution for sufficiently small $\\hslash>0$.", "revisions": [ { "version": "v1", "updated": "2018-08-28T07:31:28.000Z" } ], "analyses": { "subjects": [ "35Q55", "35A15", "35J20" ], "keywords": [ "schrödinger equation", "semiclassical states", "nonautonomous nonlinearities", "attains global maximum", "attains local minimum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }