arXiv Analytics

Sign in

arXiv:1808.08255 [math.RT]AbstractReferencesReviewsResources

Supersingular representations of rank 1 groups

Karol Koziol

Published 2018-08-24Version 1

We prove that any connected reductive group of semisimple $F$-rank 1 over a $p$-adic field admits an irreducible admissible supersingular mod-$p$ representation. This establishes one of the missing cases in Vign\'eras' existence proof for general reductive groups.

Related articles: Most relevant | Search more
arXiv:0710.1053 [math.RT] (Published 2007-10-04, updated 2010-01-05)
Extensions for supersingular representations of $GL_2(Q_p)$
arXiv:math/0403240 [math.RT] (Published 2004-03-15)
Coefficient systems and supersingular representations of $GL_2(F)$
arXiv:1406.1003 [math.RT] (Published 2014-06-04, updated 2015-12-26)
Modulo $p$ parabolic induction of pro-$p$-Iwahori Hecke algebra