{ "id": "1808.08255", "version": "v1", "published": "2018-08-24T18:18:55.000Z", "updated": "2018-08-24T18:18:55.000Z", "title": "Supersingular representations of rank 1 groups", "authors": [ "Karol Koziol" ], "comment": "6 pages. Comments welcome!", "categories": [ "math.RT", "math.NT" ], "abstract": "We prove that any connected reductive group of semisimple $F$-rank 1 over a $p$-adic field admits an irreducible admissible supersingular mod-$p$ representation. This establishes one of the missing cases in Vign\\'eras' existence proof for general reductive groups.", "revisions": [ { "version": "v1", "updated": "2018-08-24T18:18:55.000Z" } ], "analyses": { "keywords": [ "supersingular representations", "adic field admits", "existence proof", "general reductive groups", "irreducible admissible supersingular" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }