arXiv:1807.10131 [math.GT]AbstractReferencesReviewsResources
Bridge trisections in $\mathbb{CP}^2$ and the Thom conjecture
Published 2018-07-26Version 1
In this paper, we develop new techniques for understanding surfaces in $\mathbb{CP}^2$ via bridge trisections. Trisections are a novel approach to smooth 4-manifold topology, introduced by Gay and Kirby, that provide an avenue to apply 3-dimensional tools to 4-dimensional problems. Meier and Zupan subsequently developed the theory of bridge trisections for smoothly embedded surfaces in 4-manifolds. The main application of these techniques is a new proof of the Thom conjecture, which posits that algebraic curves in $\mathbb{CP}^2$ have minimal genus among all smoothly embedded, oriented surfaces in their homology class. This new proof is notable as it completely avoids any gauge theory or pseudoholomorphic curve techniques.