arXiv:1807.07442 [math.AP]AbstractReferencesReviewsResources
Concentration phenomena for a fractional Choquard equation with magnetic field
Published 2018-07-18Version 1
We consider the following nonlinear fractional Choquard equation $$ \varepsilon^{2s}(-\Delta)^{s}_{A/\varepsilon} u + V(x)u = \varepsilon^{\mu-N}\left(\frac{1}{|x|^{\mu}}*F(|u|^{2})\right)f(|u|^{2})u \mbox{ in } \mathbb{R}^{N}, $$ where $\varepsilon>0$ is a parameter, $s\in (0, 1)$, $0<\mu<2s$, $N\geq 3$, $(-\Delta)^{s}_{A}$ is the fractional magnetic Laplacian, $A:\mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ is a smooth magnetic potential, $V:\mathbb{R}^{N}\rightarrow \mathbb{R}$ is a positive potential with a local minimum and $f$ is a continuous nonlinearity with subcritical growth. By using variational methods we prove the existence and concentration of nontrivial solutions for $\varepsilon>0$ small enough.