{ "id": "1807.07442", "version": "v1", "published": "2018-07-18T10:44:27.000Z", "updated": "2018-07-18T10:44:27.000Z", "title": "Concentration phenomena for a fractional Choquard equation with magnetic field", "authors": [ "Vincenzo Ambrosio" ], "comment": "arXiv admin note: text overlap with arXiv:1801.00199", "journal": "Dynamics of Partial Differential Equations (2018)", "categories": [ "math.AP" ], "abstract": "We consider the following nonlinear fractional Choquard equation $$ \\varepsilon^{2s}(-\\Delta)^{s}_{A/\\varepsilon} u + V(x)u = \\varepsilon^{\\mu-N}\\left(\\frac{1}{|x|^{\\mu}}*F(|u|^{2})\\right)f(|u|^{2})u \\mbox{ in } \\mathbb{R}^{N}, $$ where $\\varepsilon>0$ is a parameter, $s\\in (0, 1)$, $0<\\mu<2s$, $N\\geq 3$, $(-\\Delta)^{s}_{A}$ is the fractional magnetic Laplacian, $A:\\mathbb{R}^{N}\\rightarrow \\mathbb{R}^{N}$ is a smooth magnetic potential, $V:\\mathbb{R}^{N}\\rightarrow \\mathbb{R}$ is a positive potential with a local minimum and $f$ is a continuous nonlinearity with subcritical growth. By using variational methods we prove the existence and concentration of nontrivial solutions for $\\varepsilon>0$ small enough.", "revisions": [ { "version": "v1", "updated": "2018-07-18T10:44:27.000Z" } ], "analyses": { "keywords": [ "concentration phenomena", "magnetic field", "nonlinear fractional choquard equation", "smooth magnetic potential", "fractional magnetic laplacian" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }