arXiv Analytics

Sign in

arXiv:1806.10072 [math.AP]AbstractReferencesReviewsResources

Harnack inequalities and Hölder estimates for master equations

A. Biswas, M. De León-Contreras, P. R. Stinga

Published 2018-06-26Version 1

We show parabolic interior and boundary Harnack inequalities and local H\"older continuity for solutions to master equations of the form $(\partial_t+L)^su=f$ in $\mathbb{R}\times\Omega$, where $L$ is a divergence form elliptic operator and $\Omega\subseteq\mathbb{R}^n$. To this end, we prove that fractional powers of parabolic operators $\partial_t+L$ can be characterized with a degenerate parabolic extension problem.

Related articles: Most relevant | Search more
arXiv:1209.6104 [math.AP] (Published 2012-09-27, updated 2015-01-28)
Fractional Laplacian on the torus
arXiv:2203.07418 [math.AP] (Published 2022-03-14)
Nonlocal operators related to nonsymmetric forms I: Hölder estimates
arXiv:1404.5846 [math.AP] (Published 2014-04-23, updated 2015-06-24)
Convergence Rates and Hölder Estimates in Almost-Periodic Homogenization of Elliptic Systems