{ "id": "1806.10072", "version": "v1", "published": "2018-06-26T15:48:51.000Z", "updated": "2018-06-26T15:48:51.000Z", "title": "Harnack inequalities and Hölder estimates for master equations", "authors": [ "A. Biswas", "M. De León-Contreras", "P. R. Stinga" ], "comment": "25 pages", "categories": [ "math.AP", "math.CA", "math.FA", "math.PR" ], "abstract": "We show parabolic interior and boundary Harnack inequalities and local H\\\"older continuity for solutions to master equations of the form $(\\partial_t+L)^su=f$ in $\\mathbb{R}\\times\\Omega$, where $L$ is a divergence form elliptic operator and $\\Omega\\subseteq\\mathbb{R}^n$. To this end, we prove that fractional powers of parabolic operators $\\partial_t+L$ can be characterized with a degenerate parabolic extension problem.", "revisions": [ { "version": "v1", "updated": "2018-06-26T15:48:51.000Z" } ], "analyses": { "keywords": [ "master equations", "hölder estimates", "degenerate parabolic extension problem", "divergence form elliptic operator", "boundary harnack inequalities" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }