arXiv Analytics

Sign in

arXiv:1806.09666 [math.AG]AbstractReferencesReviewsResources

The Hasse principle for homogeneous spaces with nilpotent stabilizer (Le principe de Hasse pour les espaces homogènes à stabilisateur fini)

Giancarlo Lucchini Arteche

Published 2018-06-25Version 1

We prove that the Brauer-Manin obstruction is the only obstruction to the Hasse principle for homogeneous spaces with nilpotent stabilizer. We thus generalize recent results by Harpaz and Wittenberg on finite "hyper-solvable" stabilizers. In particular, this result is true for abelian stabilizers without any hypotheses on the ambient group, which generalizes classic results by Borovoi on the subject. We prove moreover that these spaces have the real approximation property. On montre que l'obstruction de Brauer-Manin est la seule obstruction au principe de Hasse pour les espaces homog\`enes \`a stabilisateur nilpotent. On g\'en\'eralise ainsi les r\'esultats r\'ecents de Harpaz et Wittenberg sur les stabilisateurs finis "hyper-r\'esolubles". En particulier, ce r\'esultat vaut pour les espaces homog\`enes \`a stabilisateur ab\'elien sans hypoth\`ese sur le groupe ambiant, ce qui g\'en\'eralise des r\'esultats d\'ej\`a classiques de Borovoi sur le sujet. On d\'emontre au passage que ces espaces poss\`edent la propri\'et\'e d'approximation r\'eelle.

Comments: 8 pages, in French. Comments are welcome :)
Categories: math.AG, math.NT
Subjects: 14M17, 14G05
Related articles: Most relevant | Search more
arXiv:0808.2785 [math.AG] (Published 2008-08-20, updated 2017-03-13)
Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces
arXiv:1308.5603 [math.AG] (Published 2013-08-26)
Neighborhoods of subvarieties in homogeneous spaces
arXiv:1704.08646 [math.AG] (Published 2017-04-27)
Le principe de Hasse pour les espaces homogènes : réduction au cas des stabilisateurs finis (The Hasse principle for homogeneous spaces: reduction to the case of finite stabilizers)