arXiv Analytics

Sign in

arXiv:1704.08646 [math.AG]AbstractReferencesReviewsResources

Le principe de Hasse pour les espaces homogènes : réduction au cas des stabilisateurs finis (The Hasse principle for homogeneous spaces: reduction to the case of finite stabilizers)

Cyril Demarche, Giancarlo Lucchini Arteche

Published 2017-04-27Version 1

Une conjecture de Colliot-Th\'el\`ene \'etablit que l'obstruction de Brauer-Manin est la seule obstruction au principe de Hasse et \`a l'approximation faible pour les espaces homog\`enes des groupes lin\'eaires. Nous montrons que la question peut \^etre r\'eduite au cas des espaces homog\`enes de $\mathrm{SL}_{n,k}$ \`a stabilisateurs finis en suivant les travaux du deuxi\`eme auteur sur l'approximation faible. A conjecture of Colliot-Th\'el\`ene states that the Brauer-Manin obstruction is the only obstruction to the Hasse principle and to weak approximation for homogeneous spaces of linear groups. We prove that this question can be reduced to the particular case of homogeneous spaces of $\mathrm{SL}_{n,k}$ with finite stabilizers by following the work of the second author on weak approximation.

Comments: 29 pages, in French, preliminary version
Categories: math.AG, math.NT
Subjects: 14G05, 20G15, 11G35
Related articles: Most relevant | Search more
arXiv:1806.09666 [math.AG] (Published 2018-06-25)
The Hasse principle for homogeneous spaces with nilpotent stabilizer (Le principe de Hasse pour les espaces homogènes à stabilisateur fini)
arXiv:1411.2397 [math.AG] (Published 2014-11-10)
Del Pezzo surfaces of degree four violating the Hasse principle are Zariski dense in the moduli scheme
arXiv:1102.2377 [math.AG] (Published 2011-02-11, updated 2011-02-21)
Potential density for some families of homogeneous spaces