arXiv Analytics

Sign in

arXiv:1806.02456 [math.AP]AbstractReferencesReviewsResources

A local estimate for the total variation flow of curves

Lorenzo Giacomelli, Michał Łasica

Published 2018-06-06Version 1

If $\boldsymbol u \colon [0, \infty[\times I \to \mathbb R^n$ is the solution to the total variation flow on an interval $I$ with initial datum $\boldsymbol u_0 \in BV(I, \mathbb R^n)$, then $|\boldsymbol u_x(t, \cdot)| \leq |\boldsymbol u_{0,x}|$ in the sense of measures on $I$ for $t>0$.

Comments: 7 pages
Categories: math.AP
Subjects: 35A23, 35K51, 35K92
Related articles: Most relevant | Search more
arXiv:1107.2153 [math.AP] (Published 2011-07-11, updated 2011-08-17)
Total Variation Flow and Sign Fast Diffusion in one dimension
arXiv:1212.6665 [math.AP] (Published 2012-12-29, updated 2013-01-12)
Uniform Gaussian bounds for subelliptic heat kernels and an application to the total variation flow of graphs over Carnot groups
arXiv:1004.0717 [math.AP] (Published 2010-04-05, updated 2010-04-12)
Large Time Behavior of a Nonlocal Diffusion Equation with Absorption and Bounded Initial Data